If in the expansion of (1+ax)^n(1+ax)n coefficient of x^3x3 is six times that of x^2x2, find aa and nn?

1 Answer
Feb 4, 2017

a=-3a=3 and n=-4n=4

Explanation:

Binomial expansion of (1+ax)^n(1+ax)n is

1+^nC_1ax+^nC_2(ax)^2+^nC_3(ax)^3+........+^nC_n(ax)^n,

where color(white)(x)^nC_r=(n!)/(r!(n-r)!) or (n(n-1)(n-2)....(n-r+1))/(1xx2xx3xx...xxr) and a is a constant.

As coefficient of x^3 is six times the coefficient of x^2

color(white)(x)^nC_3xxa^3=6xx^nC_2xxa^2

i.e. (n(n-1)(n-2))/(1xx2xx3)xxa=6xx(n(n-1))/(1xx2)

or (n-2)/3xxa=6 i.e. a(n-2)=18 .................(1)

Further, coefficient of x is 12, we have

color(white)(x)^nC_1xxa=12 i.e. axxn=12 .................(2)

Putting (2) in (1) we get 12-2a=18

Hence, a=(18-12)/(-2)=-3

and n=12/-3=-4

and hence expansion is (1-3x)^(-4)

= 1+(-4)/1(-3x)+((-4)(-5))/2(-3x)^2+((-4)(-5)(-6))/6(-3x)^3+................

= 1+12x+90x^2+540x^3+..........