LHS=sin ^2 theta + sin^2 (theta+pi/3) + sin^2 (theta-pi/3)LHS=sin2θ+sin2(θ+π3)+sin2(θ−π3)
=1/2(2sin ^2 theta + 2sin^2 (theta+pi/3) + 2sin^2 (theta-pi/3)=12(2sin2θ+2sin2(θ+π3)+2sin2(θ−π3)
=1/2(1-cos2 theta + 1-cos2 (theta+pi/3) + 1-cos2 (theta-pi/3)=12(1−cos2θ+1−cos2(θ+π3)+1−cos2(θ−π3)
=1/2(3-cos2 theta -(cos2 (theta+pi/3) + cos2 (theta-pi/3))=12(3−cos2θ−(cos2(θ+π3)+cos2(θ−π3))
=1/2(3-cos2 theta -2cos2 thetacos((2pi)/3))=12(3−cos2θ−2cos2θcos(2π3))
=1/2(3-cos2 theta -2cos2 thetaxx(-1/2))=12(3−cos2θ−2cos2θ×(−12))
=3/2=RHS=32=RHS
Proved