Question #26248 Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Dec 20, 2016 Given #cosx+cosy=4/5# #=>2cos((x+y)/2)cos((x-y)/2)=4/5........(1)# Also given #cosx-cosy=2/7# #=>-2sin((x+y)/2)sin((x-y)/2)=2/7......(2)# Dividing (2) by (1) we get #-tan((x-y)/2)tan((x+y)/2)=2/7xx5/4# #=>tan((x-y)/2))xx1/(cot((x+y)/2))=-5/14# #=>14tan((x-y)/2))=-5(cot((x+y)/2))# #=>14tan((x-y)/2))+5(cot((x+y)/2))=0# Proved Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 963 views around the world You can reuse this answer Creative Commons License