Given {(sinx+siny=a),(cosx+cosy=b):} calculate sin((x-y)/2)= ?

2 Answers
Dec 21, 2016

sin(u+v)+sin(u-v)=2sin(u)cos(v) = a
cos(u+v)+cos(u-v)=2cos(u)cos(v) = b

so

4sin^2(u)cos^2(v) = a^2
4cos^2(u)cos^2(v) = b^2

adding

4cos^2(v) = a^2+b^2 or

4(1-sin^2(v))=a^2+b^2 or

sin(v) = pm 1/2sqrt(4-(a^2+b^2))

but u+v=x and u-v=y so v = (x-y)/2 and finally

sin((x-y)/2)= pm 1/2sqrt(4-(a^2+b^2))

Dec 24, 2016

Given

sinx+siny=a........[1]

cosx+cosy=b.......[2]

Squaring and adding [1] and [2] we get

(sinx+siny)^2+(cosx+cosy)^2 =a^2+b^2

=>sin^2x+sin^2y+cos^2x+cos^2y+2(cosxcosy+sinxsiny)=a^2+b^2

=>2+2(cos(x-y))=a^2+b^2

=>4-2+2(cos(x-y))=a^2+b^2

=>4-2[1-cos(x-y)]=a^2+b^2

=>4-2*2sin^2((x-y)/2)=a^2+b^2

=>sin^2((x-y)/2)=(4-a^2-b^2)/4

=>sin((x-y)/2)=pmsqrt((4-a^2-b^2)/4)=pm(sqrt(4-a^2-b^2))/2