If xcostheta=ycos(theta+(2pi)/3)=zcos(theta+(4pi)/3)=1/k calculate xy+yz+zx= ?

2 Answers
Dec 21, 2016

Calling lambda = x cos(theta) we have

(x+y+z)^2=(lambda/cos(theta)+lambda/cos(theta+(2pi)/3)+lambda/cos(theta+(4pi)/3))^2 = (9 lambda^2)/cos(3theta)^2

Now making x^2+y^2+z^2 we arrive at the same result. Considering

(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)

we conclude

xy+xz+yz=0

Dec 21, 2016

Let
xcostheta=ycos(theta+(2pi)/3)=zcos(theta+(4pi)/3)=1/k

So

1/x=kcostheta

1/y=kcos(theta+(2pi)/3)

1/z=kcos(theta+(4pi)/3)

Now

Given
x,y,z are non-zero real numbers

1/x+1/y+1/z

=k(costheta+cos(theta+(2pi)/3)+cos(theta+(4pi)/3))

=k(costheta+2cos(pi+theta)cos(pi/3))

=k(costheta-2*costhetaxx1/2)

=k(costheta-costheta)=kxx0=0

=>1/x+1/y+1/z=0

=>(xy+yz+zx)/(xyz)=0

=>xy+yz+zx=0