Simplify Sin[2tan^-1(sqrt((1-x)/(1+x)))]?

2 Answers
Dec 24, 2016

sin[2tan^-1(sqrt(1-x)/sqrt(1+x))]=-sqrt(1-x^2)

Explanation:

sin[2tan^-1(sqrt(1-x)/sqrt(1+x))]

As sqrt(1-x), is defined, we have x<1 and hence let x=sin2A=2sinAcosA

then sqrt(1-x)/sqrt(1+x)=sqrt(sin^2A+cos^2A-2sinAcosA)/sqrt(sin^2A+cos^2A-2sinAcosA)

= (sinA-cosA)/(sinA+cosA)

= (sinA/cosA-1)/(sinA/cosA+1)

= (tanA-tan(pi/4))/(tanAtan(pi/4)+1)

= tan(A-pi/4)

Hence 2tan^-1(sqrt(1-x)/sqrt(1+x))=2(A-pi/4)=2A-pi/2 and

sin[2tan^-1(sqrt(1-x)/sqrt(1+x))]

= sin(2A-pi/2)=-sin(pi/2-2A)=-cos2A=-sqrt(1-sin^2 2A)=-sqrt(1-x^2)

Dec 24, 2016

let x = cos 2A

So given expression becomes

Sin[2tan^-1(sqrt((1-x)/(1+x)))]

=Sin[2tan^-1(sqrt((1-cos2A)/(1+cos2A)))]

=Sin[2tan^-1(sqrt((2sin^2A)/(2cos^2A)))]

=Sin[2tan^-1(tanA)]

=Sin(2A)

=sqrt(1-cos^2(2A))

=sqrt(1-x^2)

Please note
We have taken x =cos2A

And sqrt((1-x)/(1+x)) to be real the domain of this function will be 1>= x> -1 =>2A in [0,pi)=>A in [0,pi/2)

So sin2A or Sin[2tan^-1(sqrt((1-x)/(1+x)))] should be color(red)(POSITIVE)