let x = cos 2A
So given expression becomes
Sin[2tan^-1(sqrt((1-x)/(1+x)))]
=Sin[2tan^-1(sqrt((1-cos2A)/(1+cos2A)))]
=Sin[2tan^-1(sqrt((2sin^2A)/(2cos^2A)))]
=Sin[2tan^-1(tanA)]
=Sin(2A)
=sqrt(1-cos^2(2A))
=sqrt(1-x^2)
Alternative
Let tan^-1(sqrt((1-x)/(1+x)))=theta
=>(sqrt((1-x)/(1+x)))=tantheta
So
Sin[2tan^-1(sqrt((1-x)/(1+x)))]
=Sin[2theta]
=(2tantheta)/(1+tan^2theta)
=(2sqrt((1-x)/(1+x)))/(1+(sqrt((1-x)/(1+x)))^2)
=(2sqrt((1-x)/(1+x)))/(1+(1-x)/(1+x))
=(2sqrt((1-x)/(1+x)))/((1+x+1-x)/(1+x))
=2sqrt((1-x)/(1+x))xx(1+x)/2
=sqrt(1-x)xxsqrt(1+x)
=sqrt(1-x^2