Question #27fc5

1 Answer
Dec 24, 2016

let x = cos 2A

So given expression becomes

Sin[2tan^-1(sqrt((1-x)/(1+x)))]

=Sin[2tan^-1(sqrt((1-cos2A)/(1+cos2A)))]

=Sin[2tan^-1(sqrt((2sin^2A)/(2cos^2A)))]

=Sin[2tan^-1(tanA)]

=Sin(2A)

=sqrt(1-cos^2(2A))

=sqrt(1-x^2)

Alternative

Let tan^-1(sqrt((1-x)/(1+x)))=theta

=>(sqrt((1-x)/(1+x)))=tantheta
So
Sin[2tan^-1(sqrt((1-x)/(1+x)))]

=Sin[2theta]

=(2tantheta)/(1+tan^2theta)

=(2sqrt((1-x)/(1+x)))/(1+(sqrt((1-x)/(1+x)))^2)

=(2sqrt((1-x)/(1+x)))/(1+(1-x)/(1+x))

=(2sqrt((1-x)/(1+x)))/((1+x+1-x)/(1+x))

=2sqrt((1-x)/(1+x))xx(1+x)/2

=sqrt(1-x)xxsqrt(1+x)

=sqrt(1-x^2