Question #5d572

2 Answers
Dec 26, 2016

Using the definitions of csc and cot, along with the identities

  • sin(2x)=2sin(x)cos(x)
  • cos(2x)=2cos2(x)1

we have

csc(2x)+cot(2x)=1sin(2x)+cos(2x)sin(2x)

=1+cos(2x)sin(2x)

=1+(2cos2(x)1)2sin(x)cos(x)

=2cos2(x)2sin(x)cos(x)

=cos(x)sin(x)

=cot(x)

Dec 26, 2016

See proof below

Explanation:

We use

cscx=1sinx

sin2x=2sinxcosx

cos2x=2cos2x1

cotx=cosxsinx

So,

csc2x+cot2x=1sin2x+cos2xsin2x

=1+cos2xsin2x

=1+cos2x12sinxcosx

=2cos2x2sinxcosx

=cosxsinx

=cotx

Q.E.D