4 sin x - 3 cos x = sin 3x ?
2 Answers
Hmmm...
Explanation:
It looks to me like you have slightly misremembered a standard trigonometric identity:
sin 3x = 3 sin x - 4sin^3 x
or perhaps:
cos 3x = 4 cos^3 x - 3 cos x
We can derive both of these formulae from a combination of de Moivre's theorem and Pythagoras:
cos nx + i sin nx = (cos x + i sin x)^n
cos^2 x + sin^2 x = 1
So we find:
cos 3x+i sin 3x
=(cos x + i sin x)^3
=cos^3 x + 3 i cos^2 x sin x - 3 cos x sin^2 x - i sin^3 x
= (cos^3 x - 3 cos x sin^2 x) + i(3cos^2 x sin x - sin^3 x)
Equating Real parts we have:
cos 3x = cos^3 x - 3 cos x sin^2 x
color(white)(cos 3x) = cos^3 x - 3 cos x (1 - cos^2 x)
color(white)(cos 3x) = 4 cos^3 x - 3 cos x
Equating imaginary parts we have:
sin 3x = 3cos^2 x sin x - sin^3 x
color(white)(sin 3x) = 3(1 - sin^2 x) sin x - sin^3 x
color(white)(sin 3x) = 3sin x - 4sin^3 x
Explanation:
Perhaps this is not an attempt at an identity, but an equation to be solved.
In which case:
4 sin x - 3 cos x = sin 3x = 3 sin x - 4 sin^3 x
Hence:
4 sin^3 x + sin x = 3 cos x
Square both sides to get:
16 sin^6 x + 8 sin^4 x + sin^2x = 9 cos^2 x = 9 - 9 sin^2 x
Hence:
0 = 16 sin^6 x + 8 sin^4 x + 10 sin^2 x - 9
color(white)(0) = (2 sin^2 x - 1)(8 sin^4 x + 8 sin^2 x + 9)
This has only one real root and hence we find:
sin^2 x = 1/2
So:
sin x = +-sqrt(2)/2
If
3 cos x = 4 sin^3 x + sin x = 3(sqrt(2)/2)
hence
If
3 cos x = 4 sin^3 x + sin x = 3(-sqrt(2)/2)
hence
So the general solution is:
x = pi/4 + npi" " for any integern