Prove? cscx(1+cosx)(cscx-cotx)=1

3 Answers
Dec 30, 2016

See explanation

Explanation:

We will use the following:

  • (a+b)(a-b) = a^2-b^2
  • csc(x) = 1/sin(x)
  • cot(x) = cos(x)/sin(x)
  • 1-cos^2(x) = sin^2(x)

With those,

csc(x)(1+cos(x))(csc(x)-cot(x))

= (csc(x)+cot(x))(csc(x)-cot(x))

=csc^2(x)-cot^2(x)

=1/sin^2(x)-cos^2(x)/sin^2(x)

=(1-cos^2(x))/sin^2(x)

=sin^2(x)/sin^2(x)

=1

Dec 30, 2016

LHS=cosectheta(1+costheta)(cosectheta-cottheta)

=(cosectheta+cosecthetacostheta)(cosectheta-cottheta)

=(cosectheta+1/sinthetaxxcostheta)(cosectheta-cottheta)

=(cosectheta+cottheta)(cosectheta-cottheta)

=(cosec^2theta-cot^2theta)=1=RHS

proved

See below:

Explanation:

We have:

cscx(1+cosx)(cscx-cotx)=1

distributing out:

(cscx+cscxcosx)(cscx-cotx)=1

csc^2x-cscxcotx+csc^2xcosx-cscxcosxcotx=1

and now to reorder and simplify:

1/sin^2x-cancel(cosx/sin^2x)+cancel(cosx/sin^2x)-cos^2x/sin^2x=1

(1-cos^2x)/sin^2x=1

Now we'll use the identity of sin^2x+cos^2x=1 and so sin^2x=1-cos^2x

(sin^2x)/sin^2x=1

1=1