cos2theta-sintheta=0
=>cos2theta=sintheta
=>cos2theta=cos(pi/2-theta)
=>2theta=2npipm(pi/2-theta)
when
2theta=2npi+(pi/2-theta)" where " n in ZZ
=>3theta=2npi+pi/2
=>theta=(2npi)/3+pi/6=(4n+1)pi/6
when
2theta=2npi-(pi/2-theta)" where " n in ZZ
=>theta=2npi-pi/2=(4n-1)pi/2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alternative
cos2theta-sintheta=0
=>1-2sin^2theta-sintheta=0
=>2sin^2theta+sintheta-1=0
=>2sin^2theta+2sintheta-sintheta-1=0
=>2sintheta(sintheta+1)-(sintheta+1)=0
=>(sintheta+1)(2sintheta-1)=0
So
sintheta+1=0
=>sintheta=-1=sin(-pi/2)
theta=npi-(-1)^npi/2" where " n in ZZ
Again
2sintheta-1=0
=>sintheta=1/2=sin(pi/6)
theta=npi+(-1)^npi/6" where " n in ZZ