Question #1560d

1 Answer
Dec 31, 2016

cos2theta-sintheta=0

=>cos2theta=sintheta

=>cos2theta=cos(pi/2-theta)

=>2theta=2npipm(pi/2-theta)

when

2theta=2npi+(pi/2-theta)" where " n in ZZ

=>3theta=2npi+pi/2

=>theta=(2npi)/3+pi/6=(4n+1)pi/6

when

2theta=2npi-(pi/2-theta)" where " n in ZZ

=>theta=2npi-pi/2=(4n-1)pi/2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Alternative

cos2theta-sintheta=0

=>1-2sin^2theta-sintheta=0

=>2sin^2theta+sintheta-1=0

=>2sin^2theta+2sintheta-sintheta-1=0

=>2sintheta(sintheta+1)-(sintheta+1)=0

=>(sintheta+1)(2sintheta-1)=0

So

sintheta+1=0

=>sintheta=-1=sin(-pi/2)

theta=npi-(-1)^npi/2" where " n in ZZ

Again

2sintheta-1=0

=>sintheta=1/2=sin(pi/6)

theta=npi+(-1)^npi/6" where " n in ZZ