Question #a2c18

1 Answer
Jan 3, 2017

Leave one side unchanged and use algebra and trigonometric substitutions to make the other side the same as the unchanged side.

Explanation:

Verify:

#cot^2(x)/(sin(x) + cos(x)) =(cos^2(x)sin(x) -cos^3(x))/(2sin^4(x) - sin^2(x))#

To verify, I will only change the right side until it is the same as the left side.

Remove common factor of #cos^2(x)# from the numerator and a common factor #sin^2(x)# from the denominator:

#cot^2(x)/(sin(x) + cos(x)) =(cos^2(x)(sin(x) -cos(x)))/(sin^2(x)(2sin^2(x) - 1)#

substitute #cot^2(x)# into the numerator for #cos^2(x)/sin^2(x)#:

#cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((2sin^2(x) - 1)#

Split #2sin^2(x)# into #sin^2(x) + sin^2(x)#

#cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((sin^2(x) + sin^2(x) - 1)#

Substitute #1 - cos^2(x)# for the second #sin^2(x)#:

#cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((sin^2(x) + 1 - cos^2(x) - 1)#

The 1s cancel:

#cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((sin^2(x) cancel(+ 1) - cos^2(x) cancel(- 1))#

#cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((sin^2(x) - cos^2(x))#

The denominator is the difference of two squares and we know how that factors:

#cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/(((sin(x) - cos(x))(sin(x) + cos(x)))#

The #(sin(x) -cos(x))/(sin(x) -cos(x))# cancels:

#cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)cancel(sin(x) -cos(x)))/((cancel(sin(x) - cos(x)))(sin(x) + cos(x)))#

#cot^2(x)/(sin(x) + cos(x)) =cot^2(x)/(sin(x) + cos(x))#

The right side is the same as the left side. Q.E.D.