Question #78e39

1 Answer
Jan 8, 2017

"The General Solution : "y+2sin^2x=csin^3x.The General Solution : y+2sin2x=csin3x.

"The Particular Solution : "y+2sin^2x=4sin^3x.The Particular Solution : y+2sin2x=4sin3x.

Explanation:

This is a Linear Differential Equation of First Order , usually

taken as, dy/dx+yP(x)=Q(x)dydx+yP(x)=Q(x).

To find its General Soln. , we need to multiply it by the Integrating

Factor, i.e., IF , given by, IF =e^(intP(x)dx)=eP(x)dx.

In our Example, P(x)=-3cotx, so, intP(x)dx=int{-3cotx}dxP(x)=3cotx,so,P(x)dx={3cotx}dx

= -3lnsinx=lnsin^(-3)x rArr e^(P(x)dx)=e^(lnsin^(-3)x)=1/sin^3x=3lnsinx=lnsin3xeP(x)dx=elnsin3x=1sin3x.

Multiplying the Diff. Eqn., by 1/sin^3x1sin3x, we get,

sin^(-3)xdy/dx-3ycotx/sin^3x=(sin2x)/sin^3xsin3xdydx3ycotxsin3x=sin2xsin3x

:. sin^(-3)xdy/dx-3ycosxsin^(-4)x=(2sinxcosx)/sin^3x=(2cosx)/sin^2x

:. sin^(-3)xd/dx(y)+yd/dx(sin^(-3)x)=2cotxcscx

:.d/dx{ysin^(-3)x}=2cotxcscx

Integrating, ysin^(-3)x=2intcotxcscx+c=-2cscx+c

:. y+2sin^2x=csin^3x, is the reqd. Gen. Soln.

To find the Particular Soln. , we utilise the Initial Condition :

y=2," when "x=pi/2.

Sub.ing in the Gen. Soln., we get, 2+2=c=4

Hene, the P.S. : y+2sin^2x=4sin^3x

Enjoy Maths.!