Question #f29c8

2 Answers
Jan 8, 2017

y = pi+4kpi, k = 0,1,2,cdotsy=π+4kπ,k=0,1,2,

Explanation:

tan(a+b)=(tan a+tanb)/(1-tan a tanb)tan(a+b)=tana+tanb1tanatanb

so calling

y/4 = 2arctan(1/3)+arctan(1/7)y4=2arctan(13)+arctan(17) then

tan(y/4)=tan(2arctan(1/3)+arctan(1/7))=(3/4+1/7)/(1-3/4 1/7)=1tan(y4)=tan(2arctan(13)+arctan(17))=34+1713417=1

so

tan(y/4)=tan(pi/4+kpi)tan(y4)=tan(π4+kπ) then

y = pi+4kpi, k = 0,1,2,cdotsy=π+4kπ,k=0,1,2,

Jan 8, 2017

180^@180

Explanation:

Use calculator.
arctan (1/3) = 18^@43arctan(13)=1843
2arctan (1/3) = 36^@872arctan(13)=3687
arctan (1/7) = 8^@13arctan(17)=813
2arctan (1/3) + arctan (1/7) = 36.87 + 8.13 = 45^@2arctan(13)+arctan(17)=36.87+8.13=45
Finally,
4(2arctan (1/3) + arctan (1/7)) = 4 (45^@) = 180^@4(2arctan(13)+arctan(17))=4(45)=180