Question #9925d Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Noah G Jan 10, 2017 sinxcosx−1sinxcosx+1=1−cosxsinx1+cosxsinx sinx−cosxcosxsinx+cosxcosx=sinx−cosxsinxsinx+cosxsinx sinx−cosxcosx⋅cosxsinx+cosx=sinx−cosxsinx⋅sinxsinx+cosx sinx−cosxsinx+cosx=sinx−cosxsinx+cosx LHS=RHS Identity proved! Hopefully this helps! Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 2958 views around the world You can reuse this answer Creative Commons License