Question #183ce

1 Answer
Jan 14, 2017

Given: f(x)=(sin(x)-xcos(x))/(xsin(x)+cos(x))

f(x) is of the form g(x)/(h(x)), therefore, The Quotient Rule applies.

Explanation:

let g(x) = sin(x) - xcos(x)

then g'(x) = cos(x) - cos(x) + xsin(x) = xsin(x)

let h(x) = xsin(x) + cos(x)

then h'(x) = sin(x) + xcos(x) - sin(x) = xcos(x)

and h^2(x) = x^2sin^2(x) + 2xsin(x)cos(x) + cos^2(x)

The quotient rule is:

f'(x) = (g'(x)h(x) - g(x)h'(x))/(h^2(x))

f'(x) = ((xsin(x))(xsin(x) + cos(x)) - (sin(x) - xcos(x))(xcos(x)))/(x^2sin^2(x) + 2xsin(x)cos(x) + cos^2(x))

f'(x) = (x^2sin^2(x) + xsin(x)cos(x) - xsin(x)cos(x) + x^2cos^2(x))/(x^2sin^2(x) + 2xsin(x)cos(x) + cos^2(x))

f'(x) = (x^2(sin^2(x) + cos^2(x)))/(x^2sin^2(x) + 2xsin(x)cos(x) + cos^2(x))

f'(x) = (x^2)/(x^2sin^2(x) + 2xsin(x)cos(x) + cos^2(x))