What is the integral of sqrt(x^2 + 1)?

3 Answers

Please, see the answer below:
enter image source here

Jan 19, 2017

=1/2(sinh^(-1)x+xsqrt(1+x^2))+C

Explanation:

Use x = sinh u, giving dx = cosh u du,

cosh^2u+sinh^2u=cosh 2u and sinh 2u = 2 sinh u cosh u.

Nowm the given integral becomes

int cosh^2u du

=1/2 int (1+ cosh 2u ) du

=1/2[u+1/2sinh 2u]+C

=1/2(u+sinh u cosh u)+C

=1/2(sinh^(-1)x+xsqrt(1+x^2))+C.

In log form,

sinh^(-1)x=ln(x+sqrt(x^2+1))

Jan 19, 2017

I got:

1/2xsqrt(x^2 + 1) + 1/2ln|sqrt(x^2 + 1) + x| + C


Here's another way to do it, without using reduction formulas or hyperbolic functions.

Let:

x = tantheta
dx = sec^2thetad theta

=> int sqrt(tan^2theta + 1)sec^2thetad theta

= int sec^3theta d theta

= int sectheta(sec^2theta)d theta

This can be solved using integration by parts. Let:

u = sectheta
dv = sec^2thetad theta
v = tantheta
du = secthetatanthetad theta

=> uv - intvdu

= secthetatantheta - int secthetatan^2thetad theta

= secthetatantheta - int sec^3theta - secthetad theta

= secthetatantheta - int sec^3thetad theta + intsecthetad theta

We see the integral reappears. Thus:

=> 2int sec^3thetad theta = secthetatantheta + intsecthetad theta

=> int sec^3thetad theta = 1/2secthetatantheta + 1/2ln|sectheta + tantheta|

Finally, un-substitute. Since x = tantheta, sqrt(x^2 + 1) = sqrt(tan^2theta + 1) = sqrt(sec^2theta) = sectheta, and we have:

=> int sqrt(x^2 + 1)dx = color(blue)(1/2xsqrt(x^2 + 1) + 1/2ln|sqrt(x^2 + 1) + x| + C)