What is the integral of sqrt(x^2 + 1)?
3 Answers
Please, see the answer below:
Explanation:
Use
Nowm the given integral becomes
In log form,
I got:
1/2xsqrt(x^2 + 1) + 1/2ln|sqrt(x^2 + 1) + x| + C
Here's another way to do it, without using reduction formulas or hyperbolic functions.
Let:
x = tantheta
dx = sec^2thetad theta
=> int sqrt(tan^2theta + 1)sec^2thetad theta
= int sec^3theta d theta
= int sectheta(sec^2theta)d theta
This can be solved using integration by parts. Let:
u = sectheta
dv = sec^2thetad theta
v = tantheta
du = secthetatanthetad theta
=> uv - intvdu
= secthetatantheta - int secthetatan^2thetad theta
= secthetatantheta - int sec^3theta - secthetad theta
= secthetatantheta - int sec^3thetad theta + intsecthetad theta
We see the integral reappears. Thus:
=> 2int sec^3thetad theta = secthetatantheta + intsecthetad theta
=> int sec^3thetad theta = 1/2secthetatantheta + 1/2ln|sectheta + tantheta|
Finally, un-substitute. Since
=> int sqrt(x^2 + 1)dx = color(blue)(1/2xsqrt(x^2 + 1) + 1/2ln|sqrt(x^2 + 1) + x| + C)