Prove? cotx/(cscx-1)=(cscx+1)/cotx

1 Answer

Remember that 1+cot^2x=csc^2x.

Explanation:

cotx/(cscx-1)=(cscx+1)/cotx

Remember that 1+cot^2x=csc^2x. This becomes useful if we multiply the terms with cscx to get them squared:

cotx/(cscx-1)((cscx+1)/(cscx+1))=(cscx+1)/cotx

(cotxcscx+cotx)/(csc^2x-1)=(cscx+1)/cotx

We can now use csc^2x-1=cot^2x

(cotxcscx+cotx)/(cot^2x)=(cscx+1)/cotx

(cscx+1)/(cotx)=(cscx+1)/cotx