Question #18291 Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Jan 18, 2017 LHS=(1-cos2x +sin2x)/(1+cos2x +sin2x) using formula 1-cos2x=2sin^2x and 1+cos2x=2cos^2x =(2sin^2x +2sinxcosx)/(2cos^2x +2sinxcosx) =(2sinx(sinx +cosx))/(2cosx(cosx +sinx) =(cancel2sinxcancel((sinx +cosx)))/(cancel2cosxcancel((cosx +sinx)) =sinx/cosx =tanx=RHS Proved Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 3134 views around the world You can reuse this answer Creative Commons License