Question #d88e8

1 Answer
Jan 19, 2017

y(x)= a-c/abs(x)y(x)=ac|x|

Explanation:

In the equation:

x(dy)/(dx) + y = axdydx+y=a

we can separate the variables in this way:

x(dy)/(dx) = a-yxdydx=ay

(dy)/(a-y) = (dx)/xdyay=dxx

then integrate both sides:

int (dy)/(a-y) = int (dx)/xdyay=dxx

-int (d(a-y))/(a-y) = int (dx)/xd(ay)ay=dxx

-lnabs(a-y) = lnabs(x) + Cln|ay|=ln|x|+C

lnabs(a-y) = -lnabs(x) + Cln|ay|=ln|x|+C

We can now take the exponential of both sides posing c=e^C > 0c=eC>0:

abs(a-y) = e^(-lnabs(x) + C) = e^C/ e^(lnabs(x)) = c/abs(x)|ay|=eln|x|+C=eCeln|x|=c|x|

If we make the hypothesis y<ay<a we have:

a-y = c/abs(x)ay=c|x|

y= a-c/abs(x)y=ac|x|

which is in fact always less than aa