y=x^3+tanx rArr dy/dx=d/dx{x^3+tanx}y=x3+tanx⇒dydx=ddx{x3+tanx}
=d/dx(x^3)+d/dx(tanx)=3x^(3-1)+sec^2x=ddx(x3)+ddx(tanx)=3x3−1+sec2x
:. dy/dx=3x^2+(secx)^2
:. (d^2y)/dx^2=d/dx(dy/dx)=d/dx(3x^2)+d/dx(secx)^2, i.e.,
(d^2y)/dx^2=3(2x)+d/dx(t^2), say, where, t=secx...(ast)
Here, using the Chain Rule,
d/dx(t^2)={d/dt(t^2)}{d/dx(t)}=(2t){d/dx(secx)}, so,
=(2t)(secxtanx), &, because, t=secx,
d/dx(t^2)=2sec^2xtanx
:., by (ast), (d^2y)/dx^2=6x+2sec^2xtanx.
Enjoy Maths.!