Question #dbaa1

1 Answer
Jan 28, 2017

(d^2y)/dx^2=6x+2sec^2xtanx.d2ydx2=6x+2sec2xtanx.

Explanation:

y=x^3+tanx rArr dy/dx=d/dx{x^3+tanx}y=x3+tanxdydx=ddx{x3+tanx}

=d/dx(x^3)+d/dx(tanx)=3x^(3-1)+sec^2x=ddx(x3)+ddx(tanx)=3x31+sec2x

:. dy/dx=3x^2+(secx)^2

:. (d^2y)/dx^2=d/dx(dy/dx)=d/dx(3x^2)+d/dx(secx)^2, i.e.,

(d^2y)/dx^2=3(2x)+d/dx(t^2), say, where, t=secx...(ast)

Here, using the Chain Rule,

d/dx(t^2)={d/dt(t^2)}{d/dx(t)}=(2t){d/dx(secx)}, so,

=(2t)(secxtanx), &, because, t=secx,

d/dx(t^2)=2sec^2xtanx

:., by (ast), (d^2y)/dx^2=6x+2sec^2xtanx.

Enjoy Maths.!