Question #d9ed3

1 Answer
Jan 28, 2017

Use the properties of logarithms to break into two terms and the differentiate each term.

dy/dx = 1/(2x + 18) - 1/(2x - 18)dydx=12x+1812x18

Explanation:

y = lnsqrt((x+9)/(x-9))y=lnx+9x9

Use ln(sqrt(a)) = 1/2ln(a)ln(a)=12ln(a)

y = 1/2ln((x+9)/(x-9))y=12ln(x+9x9)

Use ln(a/b) = ln(a) - ln(b)ln(ab)=ln(a)ln(b)

y = 1/2ln(x+9)- 1/2ln(x-9)y=12ln(x+9)12ln(x9)

dy/dx = 1/(2(x+9))- 1/(2(x-9))dydx=12(x+9)12(x9)

dy/dx = 1/(2x + 18) - 1/(2x - 18)dydx=12x+1812x18