4sinxcosx-2sqrt3sinx+2cosx-sqrt3=04sinxcosx−2√3sinx+2cosx−√3=0
=>2sinx(2cosx-sqrt3)+1(2cosx-sqrt3)=0⇒2sinx(2cosx−√3)+1(2cosx−√3)=0
=>(2cosx-sqrt3)(2sinx+1)=0⇒(2cosx−√3)(2sinx+1)=0
So 2cosx-sqrt3=02cosx−√3=0
=>cosx=sqrt3/2=cos(pi/6)=cos(2pi-pi/6)=cos((11pi)/6)⇒cosx=√32=cos(π6)=cos(2π−π6)=cos(11π6)
Hence
=>x=pi/6 and (11pi)/6⇒x=π6and11π6
Again
2sinx+1=02sinx+1=0
sinx=-1/2=-sin(pi/6)=sin(pi+pi/6)sinx=−12=−sin(π6)=sin(π+π6)
So =>x=(7pi)/6⇒x=7π6
Again
sinx=-1/2=-sin(pi/6)=sin(2pi-pi/6)sinx=−12=−sin(π6)=sin(2π−π6)
=>x=(11pi)/6⇒x=11π6
Hence solutions for 0<=x<=2pi0≤x≤2π
x = pi/6,(7pi)/6,(11pi)/6x=π6,7π6,11π6