Solve acosA-bsinA=c ?

2 Answers
Feb 3, 2017

given

acosA-bsinA=c

Squaring both sides we get

=>(acosA-bsinA)^2=c^2

=>a^2cos^2A+b^2sin^2A-2ab sinAcosA=c^2

=>a^2(1-sin^2A)+b^2(1-cos^2A)-2ab sinAcosA=c^2

=>a^2-a^2sin^2A+b^2-b^2cos^2A-2ab sinAcosA=c^2

=>a^2sin^2A+b^2cos^2A+2ab sinAcosA=a^2+b^2-c^2

=>(asinA+bcosA)^2=a^2+b^2-c^2

=>asinA+bcosA=pmsqrt(a^2+b^2-c^2)

Feb 3, 2017

pmsqrt(a^2+b^2-c^2)

Explanation:

{(acosA-bsinA=c),(iasinA+ibcosA=ix):}

Adding we have

a(cosA+isinA)+ib(cosA+isinA)=c+ix

or

(a+ib)e^(iA)=c+ix Now, multiplying by the conjugate we have

(a+ib)(a-ib)e^(iA)e^(-iA)=(c+ix)(c-ix)

so

a^2+b^2=c^2+x^2 and finally

x=pmsqrt(a^2+b^2-c^2)