How do you solve x^3+2x^2 = 2 ?
1 Answer
Use Cardano's method to find real root:
x_1 = 1/3(-2+root(3)(19+3sqrt(33))+root(3)(19-3sqrt(33)))
and related Complex roots.
Explanation:
First subtract
x^3+2x^2-2 = 0
Discriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 0+0+64-108+0 = -44
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=27(x^3+2x^2-2)
color(white)(0)=27x^3+54x^2-54
color(white)(0)=(3x+2)^3-12(3x+2)-38
color(white)(0)=t^3-12t-38
where
Cardano's method
We want to solve:
t^3-12t-38=0
Let
Then:
u^3+v^3+3(uv-4)(u+v)-38=0
Add the constraint
u^3+64/u^3-38=0
Multiply through by
(u^3)^2-38(u^3)+64=0
Use the quadratic formula to find:
u^3=(38+-sqrt((-38)^2-4(1)(64)))/(2*1)
=(38+-sqrt(1444-256))/2
=(38+-sqrt(1188))/2
=(38+-6sqrt(33))/2
=19+-3sqrt(33)
Since this is Real and the derivation is symmetric in
t_1=root(3)(19+3sqrt(33))+root(3)(19-3sqrt(33))
and related Complex roots:
t_2=omega root(3)(19+3sqrt(33))+omega^2 root(3)(19-3sqrt(33))
t_3=omega^2 root(3)(19+3sqrt(33))+omega root(3)(19-3sqrt(33))
where
Now
x_1 = 1/3(-2+root(3)(19+3sqrt(33))+root(3)(19-3sqrt(33)))
x_2 = 1/3(-2+omega root(3)(19+3sqrt(33))+omega^2 root(3)(19-3sqrt(33)))
x_3 = 1/3(-2+omega^2 root(3)(19+3sqrt(33))+omega root(3)(19-3sqrt(33)))