Use trig identity: cos 2a = 1 -2sin^2 a
In this case:
1 - 2sin^2 (x/2) + sin (x/2) = 0
Bring it to standard form:
2sin^2 (x/2) - sin x - 1 = 0
Solve this quadratic equation for sin (x/2):
Since a + b + c = o, use shortcut.
The 2 real roots are: sin (x/2) = 1 and sin (x/2) = c/a = - 1/2
Use trig table and unit circle -->
A. sin (x/2) = 1 --> x/2 = pi/2 + 2kpi --> x = pi + 4kpi
B. sin (x/2) = - 1/2 --> unit circle -->
a. x/2 = (7pi)/6 + 2kpi --> x = (7pi)/3 + 4kpi or x = pi/3 + 4kpi
b. x/2 = (11pi)/6 + 2kpi --> x = (11pi)/3 + 4kpi, or
x = (5pi)/3 + 4kpi