Question #0c324

1 Answer
Feb 5, 2017

-10/3.

Explanation:

Comparing the given integral with int_b^a f(x)dx," we have, "b=2, a=0, f(x)=3-x^2.

Hence, Deltax=(a-b)/n=(0-2)/n=-2/n=h," say, ":. nto oo, h to 0.

"Also, "x_i=b+iDeltax=2+i(-2/n)=2+ih.

Note that, nh=-2.

:. I=int_2^0 (3-x^2)dx

=lim_(n to oo) sum_(i=1)^(i=n)f(x_i)Deltax

Since, f(x_i)=f(2+ih)=3-(2+ih)^2=-1-4ih-i^2h^2,

I=lim_(n to oo,htoo) sum_(i=1)^(i=n)(-1-4ih-i^2h^2)h

=limsum(-h-4ih^2-i^2h^3)

=lim[-sumh-4h^2sumi-h^3sumi^2]

=lim[-hsum1-(4h^2){(n)(n+1)}/2-(h^3){(n)(n+1)(2n+1)}/6]

=lim_(hto0)[-hn-2(hn)(hn+h)-1/6(hn)(hn+h)(2hn+h)]

=[-(-2)-2(-2)(-2+0)-1/6(-2)(-2+0){2(-2)+0}]......[because, nh=-2]

=2-8+8/3=-6+8/3

:. I=-10/3.

Verification :-

int_2^0 (3-x^2)dx=[3x-x^3/3]_2^0=0-(6-8/3)=-10/3.

Enjoy Maths!