Question #fcb8e

1 Answer
Feb 6, 2017

(6arctan(4/sqrt3)-pi)/(12sqrt3)approx0.18434

Explanation:

I=int_0^(ln2)e^(2x)/(e^(4x)+3)dx

Let u=e^(2x). This implies that du=2e^(2x)dx, which we are off of by a factor of 2. We will also change the bounds by plugging x=0,ln2 into u=e^(2x), giving bounds of u=e^0=1 and u=e^(2ln2)=e^ln4=4.

I=1/2int_0^(ln2)(2e^(2x))/((e^(2x))^2+3)dx=1/2int_1^4(du)/(u^2+3)

We can manipulate this into the arctangent integral:

I=1/6int_1^4(du)/(u^2/3+1)=1/6int_1^4(du)/((u/sqrt3)^2+1)

Let v=u/sqrt3 so dv=1/sqrt3du. Don't forget to change the bounds:

I=sqrt3/6int_1^4(1/sqrt3du)/((u/sqrt3)^2+1)=1/(2sqrt3)int_(1/sqrt3)^(4/sqrt3)(dv)/(v^2+1)

This is the arctangent integral:

I=1/(2sqrt3)arctan(v)|_(1/sqrt3)^(4/sqrt3)=1/(2sqrt3)(arctan(4/sqrt3)-arctan(1/sqrt3))

I=arctan(4/sqrt3)/(2sqrt3)-1/(2sqrt3)(pi/6)

I=(6arctan(4/sqrt3)-pi)/(12sqrt3)approx0.18434