Solve sin^-1(x) - cos^-1(x) = sin^-1(3x+1)sin1(x)cos1(x)=sin1(3x+1) ?

1 Answer
Feb 6, 2017

See below.

Explanation:

sin^-1(x) - cos^-1(x) = sin^-1(3x+1)sin1(x)cos1(x)=sin1(3x+1) so

sin(sin^-1(x) - cos^-1(x))=sin(sin^-1(3x+1))sin(sin1(x)cos1(x))=sin(sin1(3x+1))

but sin(a-b)=sina cosb-cosasinbsin(ab)=sinacosbcosasinb so

sin(sin^-1(x) - cos^-1(x))=sin(sin^-1(x))cos(cos^-1(x))-cos(sin^-1(x))sin(cos^-1(x))sin(sin1(x)cos1(x))=sin(sin1(x))cos(cos1(x))cos(sin1(x))sin(cos1(x)) so

x^2-(sqrt(1-x^2))^2=3x+1x2(1x2)2=3x+1 or

x^2-1+x^2=3x+1x21+x2=3x+1 and solving we get at

x=-1/2x=12 which is the feasible solution.