What is the derivative of d/dx (x+cosx ÷ tanx )ddx(x+cosx÷tanx)?

1 Answer
Feb 25, 2017

d/dx (x+cosx ÷ tanx ) = 1 - cosx - cotxcscx ddx(x+cosx÷tanx)=1cosxcotxcscx

Explanation:

d/dx (x+cosx ÷ tanx ) = d/dx (x+cosx/tanx ) ddx(x+cosx÷tanx)=ddx(x+cosxtanx)
" "= d/dx (x)+d/dx(cosx/tanx) =ddx(x)+ddx(cosxtanx)
" "= 1 + { (tanx)(-sinx) - (cosx)(sec^2x) }/ (tanx)^2 =1+(tanx)(sinx)(cosx)(sec2x)(tanx)2
" "= 1 - (tanx)(sinx)/tan^2x - (cosx)(sec^2x)/(tanx)^2 =1(tanx)sinxtan2x(cosx)sec2x(tanx)2
" "= 1 - (sinx)*cosx/sinx - (cosx)(1/cos^2x)*cos^2x/sin^2x =1(sinx)cosxsinx(cosx)(1cos2x)cos2xsin2x

" "= 1 - cosx - (cosx)/sin^2x =1cosxcosxsin2x

" "= 1 - cosx - cotxcscx =1cosxcotxcscx