Question #f4fb1

1 Answer
Feb 9, 2017

mathworld.wolfram.commathworld.wolfram.com

Let us consider a right angled isosceles triangle ABC inwhich /_ACB="rtangle" and AC=BC=a(say)

So by Pythgorean theorem

AB^2=AC^2+BC^2=a^2+a^2=2a^2

=>AB=sqrt2a

Again /_ABC=/_BAC=45^@

So

cot45-sin45=cotA-sinA

="adjacent"/"opposite"-"opposite"/"hypotnuse"

=(AC)/(BC)-(BC)/(AB)

=a/a-a/(sqrt2a)

=1-1/sqrt2

=1-sqrt2/2

=(2-sqrt2)/2