Question #15df8

1 Answer
Feb 9, 2017

int (x^4dx)/sqrt(x^10-2) = 1/5 ln (x^5/sqrt2 + sqrt(x^10/2-1)) +C

Explanation:

Evaluate:

int (x^4dx)/sqrt(x^10-2)

Substitute:

t=x^5
dt =5x^4

int (x^4dx)/sqrt(x^10-2) = 1/5int (dt)/sqrt(t^2-2)

Substitute:

t =sqrt2 cosh u

dt = sqrt2 sinh u

1/5int (dt)/sqrt(t^2-2) =sqrt2/5 int (sinh u du)/sqrt(2cosh^2-2)

Use:

cosh^2u -1 = sinh^2u

1/5 int sinh u/sqrt(sinh^2u)du = 1/5 int du = 1/5 u +C

Reversing the substitutions:

int (x^4dx)/sqrt(x^10-2) = 1/5arccosh(x^5/sqrt2) + C

or using the logarithmic form of arccosh:

int (x^4dx)/sqrt(x^10-2) = 1/5 ln (x^5/sqrt2 + sqrt(x^10/2-1)) +C