Question #dc75d

1 Answer
Feb 10, 2017

x=(7pi)/6 and (11pi)/6" when "x in [0,2pi]

Explanation:

2sin^2x-9sinx=5
=>2sin^2x-9sinx-5=0

=>2sin^2x-10sinx+sinx-5=0

=>2sinx(sinx-5)+1(sinx-5)=0

=>(sinx-5)(2sinx+1)=0

sinx=5->"not possible"

2sinx+1=0

=>sinx=-1/2=-sin(pi/6)

=>sinx=sin(pi+pi/6)=sin((7pi)/6)
So x=(7pi)/6

Again

=>sinx=-1/2=-sin(pi/6)

=>sinx=sin(2pi-pi/6)=sin((11pi)/6)

=>x=(11pi)/6

Hence solutions are

x=(7pi)/6 and (11pi)/6" when "x in [0,2pi]