If tanθ=ab, then how do you show that asinθbcosθasinθ+bcosθ=a2b2a2+b2?

3 Answers
Feb 11, 2017

We know that tanθ=sinθcosθ, so we know that sinθ=a and cosθ=b

asinθbcosθasinθ+bcosθ=a(a)b(b)a(a)+b(b)

This can be written as a2b2a2+b2.

Hopefully this helps!

Feb 11, 2017

proved R.H.S = L.H.S

Explanation:

We know tanθ=ab=heightbase

In a right angle triangle, we know, (hypoteνse)2=(height)2+(base)2

So, hypotenuse = a2+b2

Now sinθ=heighthypoteνse=aa2+b2 and
cos θ=basehypoteνse=ba2+b2

So, asinθbcosθasinθ+bcosθ

= #[a.{a/sqrt(a^2+b^2)} - [b{b/sqrt(a^2+b^2)}]]/[[a{a/sqrt(a^2+b^2)}] +[b{b/sqrt(a^2+b^2)}]#

=a2a2+b2b2a2+b2a2a2+b2b2a2+b2

= a2b2a2+b2

= R.H.S

Feb 12, 2017

asinθbcosθasinθ+bcosθ

=asinθcosθbcosθcosθasinθcosθ+bcosθcosθ

=atanθbatanθ+b

=a×abba×ab+b

=a2b2a2+b2

Proved