Solve the equation sinx \ cosx = sqrt(2)/4 for 0 le x le 2pi ?

1 Answer
Feb 11, 2017

x = pi/8, (3pi)/8, (9pi)/8, (11pi)/8

Explanation:

We want to solve:

sinx \ cosx = sqrt(2)/4

We can simplify the expression using the identity;

sin 2A -= 2sinA \ cos A

Which gives us:

\ \ 1/2sin2x = sqrt(2)/4
:. sin2x = sqrt(2)/2

If 0 le x le 2pi => 0 le 2x le 4pi, so we look for solutions of sin theta = sqrt(2)/2 for theta in [0,4pi]

enter image source here

So the solutions within the range 2x in [0,4pi] \ \ (=> x in [0,2pi]) are:

\ \ \ \ \ 2x = pi/4, pi-pi/4, 2pi+pi/4, 3pi-pi/4
:. 2x = pi/4, (3pi)/4, (9pi)/4, (11pi)/4
:. \ \ x = pi/8, (3pi)/8, (9pi)/8, (11pi)/8