Solve the equation sinx \ cosx = sqrt(2)/4 for 0 le x le 2pi ?
1 Answer
Feb 11, 2017
x = pi/8, (3pi)/8, (9pi)/8, (11pi)/8
Explanation:
We want to solve:
sinx \ cosx = sqrt(2)/4
We can simplify the expression using the identity;
sin 2A -= 2sinA \ cos A
Which gives us:
\ \ 1/2sin2x = sqrt(2)/4
:. sin2x = sqrt(2)/2
If
So the solutions within the range
\ \ \ \ \ 2x = pi/4, pi-pi/4, 2pi+pi/4, 3pi-pi/4
:. 2x = pi/4, (3pi)/4, (9pi)/4, (11pi)/4
:. \ \ x = pi/8, (3pi)/8, (9pi)/8, (11pi)/8