Question #2ef29

1 Answer
Feb 12, 2017

y = e^(-2x) ( 2 cos x - 3 sin x)y=e2x(2cosx3sinx)

Explanation:

This is homogeneous so we only need the complementary solution.

The most common approach which is to go straight to the "characteristic equation", which here is:

lambda^2 + 4 lambda + 5 = 0λ2+4λ+5=0

And which has complex roots:

lambda_(1,2) = (-4 pm sqrt ( 4^2 - 4(5) ))/(2) = - 2 pm iλ1,2=4±424(5)2=2±i

The solution to this equation is therefore:

y = A e^((-2 + i )x) + B e^((-2 - i )x)y=Ae(2+i)x+Be(2i)x

= e^(-2x) (A e^( i x) + B e^( - i) x)=e2x(Aeix+Beix)

Using Euler's Formula, e^(i theta) = cos theta + i sin thetaeiθ=cosθ+isinθ, we can expand this to:

= e^(-2x) (A (cos x + i sin x) + B (cos x - i sin x ))=e2x(A(cosx+isinx)+B(cosxisinx))

= e^(-2x) ( (A+B) cos x + i (A-B) sin x)=e2x((A+B)cosx+i(AB)sinx)

And then simplify with new integration constants:

= e^(-2x) ( C cos x + D sin x)=e2x(Ccosx+Dsinx)

We can now apply the IV's:

y(0) = 2 implies 2 = (1) ( C + D (0)) implies C = 2y(0)=22=(1)(C+D(0))C=2

We then have:

y = e^(-2x) ( 2 cos x + D sin x)y=e2x(2cosx+Dsinx)

So by the product rule:

y' = -2e^(-2x) ( 2 cos x + D sin x) + e^(-2x) ( - 2 sin x + D cos x)

= e^(-2x)( ( -4 + D)cos x - (2D + 2) sin x)

Applying the other IV:

y'(0) = -7 implies -7 = (1)((-4+D) - (2D+2)(0) )

implies D = -3

implies y = e^(-2x) ( 2 cos x - 3 sin x)