If #P(x)=x^3+13x^2-8x+20# what is the value of #P(x0# when #x=1#?

2 Answers
Feb 13, 2017

#P(-1)=40#

Explanation:

If #P(color(red)x)=color(red)x^3+13color(red)x^2-8color(red)x+20#
then
#color(white)("XX")P(color(red)(-1))=(color(red)(-1))^3+13 * (color(red)(-1))^2 - 8 * (color(red)(-1))+20#

#color(white)("XXXXXX")=-1 +13+8 +20#

#color(white)("XXXXXX")=40#

Feb 13, 2017

#40#

Explanation:

To evaluate P(-1), substitute x = - 1 in P(x)

#rArrP(color(red)(-1))=(color(red)(-1))^3+13(color(red)(-1))^2-8(color(red)(-1))+20#

#=-1+13+8+20#

#=40#