Find the Laplace Transform f(t)=t/Tf(t)=tT Over the interval [0,T][0,T]?
2 Answers
ℒ \ {f(t)} = 1/(Ts^2 )\ \ \ provideds>0
Explanation:
By definition;
ℒ \ {f(t)} = int_(0)^(oo) e^(-st) \ f(t) \ dt
And so if we have
ℒ \ {f(t)} = int_(0)^(oo) e^(-st) \ t/T \ dt
" " = 1/T \ int_(0)^(oo) e^(-st) \ t \ dt
We can integrate this by parts;
Let
{ (u,=t, => (du)/dt,=1), ((dv)/dt,=e^(-st), => v,=-1/se^(-st) ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dt) \ dt = (u)(v) - int \ (v)((du)/dt) \ dt
Gives us:
ℒ \ {f(t)} = int_(0)^(oo) e^(-st) \ t/T \ dt
" " = 1/T { [(t)(-1/se^(-st))]_0^oo - int_0^oo \ (-1/se^(-st))(1) \ dt }
" " = 1/T { [-t/se^(-st)]_0^oo + 1/s int_0^oo \ e^(-st) \ dt }
" " = 1/T { 0 + [-e^(-st)/s^2]_0^oo }
" " = 1/T 1/s^2 \ \ \ provideds>0
Hence:
ℒ \ {f(t)} = 1/(Ts^2 )\ \ \ provideds>0
ℒ \ {f(t)} = (1-e^(-Ts) - Tse^(-Ts))/(Ts^2(1-e^(-Ts)))
Explanation:
Over the interval
u(t) = { (0,t lt 0), (1, t gt 1) :}
So that for a single period:
f_1(t) = t/T( u(t) - u(t-T) )
![]()
Then;
ℒ \ {f_1(t)} = ℒ \ {t/T( u(t) - u(t-T) )}
" " = 1/T \ ℒ \ {t( u(t) - u(t-T) )}
" " = 1/T \ ℒ \ {tu(t) - tu(t-T) }
We can then manipulate the function as follows;
ℒ \ {f_1(t)} = 1/T \ ℒ \ {tu(t) - (t-T+T)u(t-T) }
" " = 1/T \ ℒ \ {tu(t) - (t-T)u(t-T) - (T)u(t-T)}
We then take the Laplace Transform of the individual pieces, I won't derive from first principles but instead just use lookup tables and quote the result, as follows:
{: ( f(t), ℒ \ [f(t)] ), ( tu(t), 1/s^2), ( (t-T)u(t-T), e^(-Ts)/(s^2) ), ( Tu(t-T), (Te^(-Ts))/s) :}
And so we get:
ℒ \ {f_1(t)} = 1/T \ {1/s^2 - e^(-Ts)/(s^2) - (Te^(-Ts))/s}
" " = 1/T \ { (1-e^(-Ts) - Tse^(-Ts))/(s^2) }
" " = (1-e^(-Ts) - Tse^(-Ts))/(Ts^2)
So then the Laplace Transform of the full periodic function is given by:
ℒ \ {f(t)} = (1-e^(-Ts) - Tse^(-Ts))/(Ts^2(1-e^(-Ts)))