Question #2dd5b

1 Answer
Feb 15, 2017

Given tanu=5/12tanu=512
Both u and v uandv are in III quadrant
So
tanu->+vetanu+ve

tanv->+vetanv+ve

sinu->-vesinuve

sinv->-vesinvve

cosu->-vecosuve

cosv->-vecosvve

sinu=1/cscu=-1/sqrt(1+cot^2u)=-1/sqrt(1+12^2/5^2)=-5/13sinu=1cscu=11+cot2u=11+12252=513

cosu=sinu/tanu=-(5/13)/(5/12)=-12/13cosu=sinutanu=513512=1213

Given sinv=-3/5sinv=35

cosvcosv
=-sqrt(1-sin^2v)=-sqrt(1-9/25)=-4/5=1sin2v=1925=45

tanv=sinv/cosv=3/4tanv=sinvcosv=34

sin(u+v)sin(u+v)

=sinucosv+cosusinv=sinucosv+cosusinv

=(-5/13)(-4/5)+(-12/13)(-3/5)=(513)(45)+(1213)(35)

=20/65+36/65=56/65=2065+3665=5665

tan(u+v)=(tanu+tanv)/(1-tanutanv)tan(u+v)=tanu+tanv1tanutanv

=(5/12+3/4)/(1-5/12*3/4)=(14/12)/(11/16)=7/6*16/11=56/33=512+34151234=14121116=761611=5633

cos(u+v)cos(u+v)

=cosucosv-sinusinv=cosucosvsinusinv

=(-12/13)(-4/5)-(-5/13)(-3/5)=(1213)(45)(513)(35)

=48/65-15/65=33/65=48651565=3365