Given tanu=5/12tanu=512
Both u and v uandv are in III quadrant
So
tanu->+vetanu→+ve
tanv->+vetanv→+ve
sinu->-vesinu→−ve
sinv->-vesinv→−ve
cosu->-vecosu→−ve
cosv->-vecosv→−ve
sinu=1/cscu=-1/sqrt(1+cot^2u)=-1/sqrt(1+12^2/5^2)=-5/13sinu=1cscu=−1√1+cot2u=−1√1+12252=−513
cosu=sinu/tanu=-(5/13)/(5/12)=-12/13cosu=sinutanu=−513512=−1213
Given sinv=-3/5sinv=−35
cosvcosv
=-sqrt(1-sin^2v)=-sqrt(1-9/25)=-4/5=−√1−sin2v=−√1−925=−45
tanv=sinv/cosv=3/4tanv=sinvcosv=34
sin(u+v)sin(u+v)
=sinucosv+cosusinv=sinucosv+cosusinv
=(-5/13)(-4/5)+(-12/13)(-3/5)=(−513)(−45)+(−1213)(−35)
=20/65+36/65=56/65=2065+3665=5665
tan(u+v)=(tanu+tanv)/(1-tanutanv)tan(u+v)=tanu+tanv1−tanutanv
=(5/12+3/4)/(1-5/12*3/4)=(14/12)/(11/16)=7/6*16/11=56/33=512+341−512⋅34=14121116=76⋅1611=5633
cos(u+v)cos(u+v)
=cosucosv-sinusinv=cosucosv−sinusinv
=(-12/13)(-4/5)-(-5/13)(-3/5)=(−1213)(−45)−(−513)(−35)
=48/65-15/65=33/65=4865−1565=3365