How do you prove that -2cosbeta(sin alpha - cosbeta) = (sin alpha - cosbeta)^2 + cos^2beta - sin^2alpha?

1 Answer
Feb 15, 2017

You're going to want to expand everything on the right.

RHS:

(sin alpha - cos beta)(sin alpha - cos beta) + (cos beta + sin alpha)(cos beta - sin alpha)

sin^2alpha - 2cosbetasinalpha + cos^2beta + cos^2beta -sin^2alpha

2cos^2beta - 2cosbetasinalpha

2cosbeta(cos beta - sin alpha)

-2cosbeta(sin alpha - cos beta)

The left hand side now equals the right hand side, so the identity has been proved.

Hopefully this helps!