What is the general solution of the differential equation dy/dx +y = y^2(cosx-sinx) ?

2 Answers
Feb 16, 2017

y = 1/( C e^x - sin x)

Explanation:

y' + y = y^2 (cos x - sin x)

(y')/y^2 + 1/y = cos x - sin x

Let v(x) = 1/(y(x)), such that v' = - (y')/y^2

implies - v' + v = cos x - sin x

implies v' - v = - cos x + sin x

From here, we grab the Integrating Factor, \lambda(x):

lambda(x) = e^(- int dx) = e^(-x)

implies e^(-x) ( v' - v) = e^(-x) ( - cos x + sin x)

implies v e^(-x) = int dx qquad e^(-x) ( - cos x + sin x)

qquad = int dx qquad d/dx ( -e^(-x) sin x)

implies v e^(-x) = -e^(-x) sin x + C

From there, we remember that: v = 1/y.

Therefore:

y = 1/( C e^x - sin x)

Feb 16, 2017

The solution to the DE

dy/dx +y = y^2(cosx-sinx)

is:

y = 1/(Ce^x - sin x)

Explanation:

We have:

dy/dx +y = y^2(cosx-sinx) \ \ \ \ \ ..... [1]

This is a First Order Bernoulli differential equation of the form:

dy/dx + P(x) \ y = Q(x) \ y^n

The technique to solve such an equation is to use a substitution to reduce the equation to a linear differential equation. We can do this by letting v = y^(-1)

v=y^(-1) <=> y=1/v

Differentiating we get:

\ \ \ \ \ (dv)/dy = -1/y^2
\ \ \ \ \ (dy)/dx = (dy)/(dv)*(dv)/dx \ \ \ (chain rule)
:. (dy)/dx = -y^2 \ (dv)/dx
:. (dy)/dx = -1/v^2 \ (dv)/dx

Substituting into the DE [1] gives us:

-1/v^2 \ (dv)/dx +1/v = 1/v^2(cosx-sinx)
:. -(dv)/dx + v = cosx-sinx
:. (dv)/dx - v = sinx-cosx \ \ \ \ \ [2]

And so we have reduced our non-linear DE to a First Order Linear Differential equation of the form

(dv)/dx + P(x)v = Q(x)

We can sole this equation by using an Integrating Factor to convert the equation to a the perfect differential of a product as follows:

Let I = exp( \ int \ P(x) \ dx \ )
\ \ \ \ \ \ \ = exp( \ int \ -1 \ dx \ )
\ \ \ \ \ \ \ = exp( -x )
\ \ \ \ \ \ \ = e^( -x )

Multiply the DE [2] by the IF:

e^( -x )(dv)/dx - ve^( -x ) = e^( -x )(sinx-cosx)
d/dx \ (ve^( -x )) = e^( -x )(sinx-cosx)

This is a simple separable DE so we can separate the variables to get:

ve^( -x ) = int \ e^( -x )(sinx-cosx) dx

To save space I will just quote the result for the integral on the RHS, but this can easily be derived using Integration by Parts, so we get:

ve^( -x ) = -e^( -x )sinx + C

Restoring the earlier substitution the gives:

y^(-1) e^( -x ) = e^( -x )sinx + C
:. \ y^(-1) = -sinx + Ce^x
:. \ \ \ \ 1/y = Ce^x - sin x
:. \ \ \ \ \ y = 1/(Ce^x - sin x)