Question #f5744

1 Answer
Feb 16, 2017

With questions like these we usually exploit the difference of squares identity:

x^2-y^2=(x+y)(x-y)x2y2=(x+y)(xy)

Multiply numerator and denominator of LHSLHS of the trig expression by (1+sinu)(1+sinu)

Explanation:

(1+sinu)/(1-sinu)xx(1+sinu)/(1 +sinu)1+sinu1sinu×1+sinu1+sinu

sinu!=1sinu1

=(1+2sinu+sin^2u)/(1-sin^2u)=1+2sinu+sin2u1sin2u

"but " 1-sin^2u=cos^2ubut 1sin2u=cos2u

=(1+2sinu+sin^2u)/cos^2u=1+2sinu+sin2ucos2u

=1/cos^2u+2sinu/cos^2u+sin^2u/cos^2u=1cos2u+2sinucos2u+sin2ucos2u

=1/cos^2u+2color(red)(sinu/cosu)xxcolor(blue)(1/cosu)+sin^2u/cos^2u=1cos2u+2sinucosu×1cosu+sin2ucos2u

=sec^2u+2color(red)(tanu)color(blue)(secu)+tan^2u=sec2u+2tanusecu+tan2u

=(secu+tanu)^2" as required"=(secu+tanu)2 as required