Simplify cos x - cos 2x + sin 2x - sin 3x = ?

1 Answer
Feb 18, 2017

Use these trig identities:
cos a - cos b= - 2sin ((a + b)/2)sin ((a - b)/2)
sin a - sin b = 2cos ((a + b)/2)sin ((a - b)/2)
In this case:
cos x - cos 2x = 2sin ((3x)/2)sin (x/2) (1)
sin 2x - sin 3x = -2cos ((5x)/2)sin (x/2) (2)
Add (1) and (2).
Put sin (x/2) into common factor, we get:
cos x - cos 2x + sin 2x - sin 3x =
= 2sin (x/2)[sin ((3x)/2) - cos ((5x)/2)]