Question #fc511

1 Answer

We have that

log(2x+1)=1-log(x-2)log(2x+1)=1log(x2)

log(2x+1)+log(x-2)=1log(2x+1)+log(x2)=1

log[(2x+1)(x-2)]=1log[(2x+1)(x2)]=1 [Use the additive law of logarithms]

log[(2x+1)(x-2)]=log10log[(2x+1)(x2)]=log10 [We used the base 10 logarithm here]

(2x+1)(x-2)=10(2x+1)(x2)=10

2 x^2 - 3 x - 12 = 02x23x12=0

The last one (quadratic equation) has solutions

x_1 = 3/4 - sqrt(105)/4x1=341054 or x_1≈-1.8117x11.8117

x_2= 3/4 + sqrt(105)/4x2=34+1054 or x_2≈3.3117x23.3117

Because (x-2)>=0(x2)0 hence x>=2x2 the acceptable solution is

x_2= 3/4 + sqrt(105)/4x2=34+1054