We have that
log(2x+1)=1-log(x-2)log(2x+1)=1−log(x−2)
log(2x+1)+log(x-2)=1log(2x+1)+log(x−2)=1
log[(2x+1)(x-2)]=1log[(2x+1)(x−2)]=1 [Use the additive law of logarithms]
log[(2x+1)(x-2)]=log10log[(2x+1)(x−2)]=log10 [We used the base 10 logarithm here]
(2x+1)(x-2)=10(2x+1)(x−2)=10
2 x^2 - 3 x - 12 = 02x2−3x−12=0
The last one (quadratic equation) has solutions
x_1 = 3/4 - sqrt(105)/4x1=34−√1054 or x_1≈-1.8117x1≈−1.8117
x_2= 3/4 + sqrt(105)/4x2=34+√1054 or x_2≈3.3117x2≈3.3117
Because (x-2)>=0(x−2)≥0 hence x>=2x≥2 the acceptable solution is
x_2= 3/4 + sqrt(105)/4x2=34+√1054