LHS=(sina-cosa+1)/(sina+cosa-1)
As in the numerator of RHS is cosa, we multiply cosa with both numerator and denominator of LHS and proceed to simplify it to get the expression of RHS.
So LHS=(cosa(sina-cosa+1))/(cosa(sina+cosa-1))
=(cosa(sina-cosa+1))/(cosa*sina+cos^2a-cosa))
=(cosa(sina-cosa+1))/(cosa*sina+1-sin^2a-cosa)
=(cosa(sina-cosa+1))/((1-sina)(1+sina)-cosa+cosasina)
=(cosa(sina-cosa+1))/((1-sina)(1+sina)-cosa(1-sina))
=(cosa(cancel(sina-cosa+1)))/((1-sina)(cancel(sina-cosa+1)))
=cosa/(1-sina)=RHS