The volume of a sphere is changing at a constant rate of pi/3 \ cm^3s^-1. How fats is the surface area changing when the volume is (9pi)/2?
2 Answers
(dA)/dt =(4pi)/9 \ cm^2s^-1
Explanation:
Let us set up the following variables:
![]()
{(r, "Radius of sphere at time t","(cm)"), (A, "Surface area of sphere at time t", "(cm"^2")"), (V, "Volume of sphere at time t", "(cm"^3")"), (t, "time", "(sec)") :}
Our aim is to find
The standard formula for Area & Volume of a sphere are:
V=4/3pir^3 \ \ \ \ .... [1]
A=4pir^2 \ \ \ \ \ \ .... [2]
When
:. r^3 =9/2*3/4
:. r =3/2
Differentiating [1] and [2] wrt
(dV)/(dr)=4pir^2 and(dA)/(dr) = 8pir
And from the chain rule we get:
(dA)/dt =(dA)/(dr) * (dr)/(dV)* (dV)/(dt)
\ \ \ \ \ \ \=8pir * 1/(4pir^2) * (dV)/(dt)
\ \ \ \ \ \ \=2/r * (dV)/(dt)
So when
(dA)/dt =2/(3/2) * pi/3
\ \ \ \ \ \ \=(4pi)/9
Explanation:
given that,
when
Area pf sphere,
when
therefore,