The volume of a sphere is changing at a constant rate of pi/3 \ cm^3s^-1. How fats is the surface area changing when the volume is (9pi)/2?

2 Answers
Feb 20, 2017

(dA)/dt =(4pi)/9 \ cm^2s^-1

Explanation:

Let us set up the following variables:

enter image source here

{(r, "Radius of sphere at time t","(cm)"), (A, "Surface area of sphere at time t", "(cm"^2")"), (V, "Volume of sphere at time t", "(cm"^3")"), (t, "time", "(sec)") :}

Our aim is to find (dA)/dt when V=(9pi)/2 and (dV)/dt=pi/3.

The standard formula for Area & Volume of a sphere are:

V=4/3pir^3 \ \ \ \ .... [1]
A=4pir^2 \ \ \ \ \ \ .... [2]

When V=(9pi)/2 => 4/3pir^3 =(9pi)/2

:. r^3 =9/2*3/4
:. r =3/2

Differentiating [1] and [2] wrt r we get;

(dV)/(dr)=4pir^2 and (dA)/(dr) = 8pir

And from the chain rule we get:

(dA)/dt =(dA)/(dr) * (dr)/(dV)* (dV)/(dt)
\ \ \ \ \ \ \=8pir * 1/(4pir^2) * (dV)/(dt)
\ \ \ \ \ \ \=2/r * (dV)/(dt)

So when V=(9pi)/2, (dV)/dt=pi/3 and r =3/2, then:

(dA)/dt =2/(3/2) * pi/3
\ \ \ \ \ \ \=(4pi)/9

Feb 20, 2017

4/9 pi cm^2/s

Explanation:

V = 4/3 pi*r^3, where V =volume of sphere and r =radius.

given that,
(dV)/(dt) =pi/3 and V =9/2 pi

4/3 pi *r^3 = 9/2 pi

r^3 = 9/2 pi * 3/(4 pi)

r^3 = 27/8, r =3/2

V=4/3 pi*r^3, then (dV)/(dr) = 4 pi*r^2

when r =3/2, (dV)/(dr) = 4 pi*(3/2)^2=9 pi

(dr)/(dt) = (dV)/(dt)/((dV)/(dr))

= (pi/3)/(9 pi)=1/27

Area pf sphere, A =4 pi r^2

(dA)/(dr) = 8 pi r
when r =3/2, (dA)/(dr) = 8 pi r =8 pi (3/2)=12 pi

therefore,
(dA)/(dt) = (dA)/(dr)*(dr)/(dt)

=12 pi*1/27 = 4/9 pi (cm)^2/s