How do you prove (secx+tanx)(1−sinx)=cosx ?
1 Answer
Feb 21, 2017
See explanation...
Explanation:
Use:
secx=1cosx
tanx=sinxcosx
cos2x+sin2x=1
Then:
(secx+tanx)(1−sinx)=(1cosx+sinxcosx)(1−sinx)
(secx+tanx)(1−sinx)=(1+sinx)(1−sinx)cosx
(secx+tanx)(1−sinx)=1−sin2xcosx
(secx+tanx)(1−sinx)=cos2xcosx
(secx+tanx)(1−sinx)=cosx