(sinx-sinxcosx)/(sinx+sinxtanx)=(1-cosx)/(1+tanx)sinxsinxcosxsinx+sinxtanx=1cosx1+tanx?

1 Answer

Factor out sinxsinx in the numerator and denominator of the left side fraction. See below for details:

Explanation:

We have:

(sinx-sinxcosx)/(sinx+sinxtanx)=(1-cosx)/(1+tanx)sinxsinxcosxsinx+sinxtanx=1cosx1+tanx

I'm first going to factor out sinxsinx in the numerator and denominator on the left side:

(sinx(1-cosx))/(sinx(1+tanx))=(1-cosx)/(1+tanx)sinx(1cosx)sinx(1+tanx)=1cosx1+tanx

which I can write as:

(sinx/sinx)(1-cosx)/(1+tanx)=(1-cosx)/(1+tanx)(sinxsinx)1cosx1+tanx=1cosx1+tanx

(1)(1-cosx)/(1+tanx)=(1-cosx)/(1+tanx)(1)1cosx1+tanx=1cosx1+tanx

(1-cosx)/(1+tanx)=(1-cosx)/(1+tanx)color(white)(000)color(green)sqrt1cosx1+tanx=1cosx1+tanx000