Question #59984

1 Answer
Feb 23, 2017

(-18/5,1/5),(3,-2)(185,15),(3,2)

Explanation:

Solve using color(blue)"substitution"substitution

Rearrange the linear equation to give x in terms of y, then substitute into the equation of the circle.

x+3y=-3rArrx=color(blue)(-3-3y)to(1)x+3y=3x=33y(1)

rArr(color(blue)(-3-3y))^2+y^2=13(33y)2+y2=13

distributing the bracket using the FOIL method.

rArr(9+18y+9y^2)+y^2=13(9+18y+9y2)+y2=13

simplify and equate to zero.

rArr10y^2+18y-4=010y2+18y4=0

factorising the left side.

2(5y-1)(y+2)=02(5y1)(y+2)=0

solving for y gives.

•5y-1=0rArry=1/55y1=0y=15

•y+2=0rArry=-2y+2=0y=2

Substitute these values for y into (1) to obtain corresponding
x-coordinates.

• y=1/5to x=-3-3/5=-18/5to(-18/5,1/5)y=15x=335=185(185,15)

• y=-2 to x=-3+6=3 to(3,-2)y=2x=3+6=3(3,2)

The graph illustrates, geometrically, the intersections of the linear equation with the circle.
graph{(x^2+y^2-13)(y+1/3x+1)=0 [-10, 10, -5, 5]}