Question #1b893

2 Answers
Feb 27, 2017

see below

Explanation:

Use the following formulas:

  1. cos(A+B)=cosAcosB-sinAsinBcos(A+B)=cosAcosBsinAsinB
  2. cos 2A=2cos^2 A -1cos2A=2cos2A1
  3. sin 2A=2sinAcosAsin2A=2sinAcosA
  4. sin^2A+cos^2A=1sin2A+cos2A=1

Left Hand Side:

cos 3 theta = cos (2theta+theta)cos3θ=cos(2θ+θ)

=cos2theta cos theta - sin 2 theta sin theta=cos2θcosθsin2θsinθ

=(2cos^2theta-1)cos theta-2sin theta cos theta*sin theta=(2cos2θ1)cosθ2sinθcosθsinθ

=2cos^3 theta-cos theta-2cos theta sin^2 theta=2cos3θcosθ2cosθsin2θ

=2cos^3 theta-cos theta-2cos theta (1-cos^2 theta)=2cos3θcosθ2cosθ(1cos2θ)

=2cos^3 theta-cos theta-2cos theta+2cos^3 theta=2cos3θcosθ2cosθ+2cos3θ

=4cos^3 theta-3 cos theta=4cos3θ3cosθ

:.= Right Hand Side

Feb 27, 2017

See below.

Explanation:

De Moivre's Formula:

(cos x +i sin x )^n =\cos nx +i\sin nx

So:

(cos x +i sin x )^3 =\cos 3x +i\sin 3x qquad square

But it is also true from a Binomial Expansion that:

(cos x +i sin x )^3 =cos^3 x + 3 cos^2 x (i sin x) + 3 cos x (i sin x)^2 + (i sin x)^3

=cos^3 x + 3 i cos^2 x sin x - 3 cos x sin^2 x - i sin^3 x

Collecting real and imaginary terms:

=(cos^3 x - 3 cos x sin^2 x)+ i \ (3 cos^2 x sin x - sin^3 x) qquad triangle

Equating real terms in triangle and square:

implies cos 3x = cos^3 x - 3 cos x sin^2 x

Using the Pythagorean Identity:

implies cos 3x = cos^3 x - 3 cos x color(red)((1 - cos^2 x))

implies cos 3x = cos^3 x - 3 cos x + 3cos^3 x

implies cos 3x = 4 cos^3 x - 3 cos x

Ta da!!

Of course, replace x with theta